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The Hidden Measurement Formalism: What Can
Be Explained and Where Quantum Paradoxes
Remain
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In the hidden measurement formalism that we have developed in Brussels we
explain quantum structure as due to the presence of two effects; (a) a real change
of state of the system under influence of the measurement and (b) a lack of
knowledge about a deeper deterministic reality of the measurement process. We
show that the presence of these two effects leads to the major part of the quantum
mechanical structure of a theory describing a physical system, where the
measurements to test the properties of this physical system contain the two
mentioned effects. We present a quantum machine, with which we can illustrate
in a simple way how the quantum structure arises as a consequence of the two
effects. We introduce a parameter e that measures the amount of lack of knowledge
on the measurement process, and by varying this parameter, we describe a
continuous evolution from a quantum structure (maximal lack of knowledge) to
a classical structure (zero lack of knowledge). We show that for intermediate
values of e we find a new type of structure that is neither quantum nor classical.
We analyze the quantum paradoxes in the light of these findings and show that
they can be divided into two groups: (1) The group (measurement problem and
SchroÈ dinger cat paradox) where the paradoxical aspects arise mainly from the
application of standard quantum theory as a general theory (e.g., also describing
the measurement apparatus). This type of paradox disappears in the hidden
measurement formalism. (2) A second group collecting the paradoxes connected
to the effect of nonlocality (the Einstein±Podolsky±Rosen paradox and the
violation of Bell’ s inequalities). We show that these paradoxes are internally
resolved because the effect of nonlocality turns out to be a fundamental property
of the hidden-measurem ent formalism itself.

1. INTRODUCTION

Quantum mechanics was originally introduced as a noncommutative

matrix calculus of observables by Werner Heisenberg (1925) and in parallel
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as a wave mechanics by Erwin SchroÈ dinger (1926). Structurally very different

theories, both matrix mechanics and wave mechanics could explain fruitfully

the early observed quantum phenomena. Already in the same year the two
theories were shown to be realizations of the same, more abstract, ket±bra

formalism by Dirac (1958). Some years later, in 1934, John Von Neumann

put forward a rigorous mathematical framework for quantum theory in an

infinite-dimensional separable complex Hilbert space (Von Neumann, 1955).

Matrix mechanics and wave mechanics appear as concrete realizations: the

first one if the Hilbert space is l 2, the collection of all square-summable
complex numbers, and the second one if the Hilbert space is L 2, the collection

of all square-integrable complex functions. The formulation of quantum

mechanics in the abstract framework of a complex Hilbert space is now

usually referred to as standard quantum mechanics.’

The basic conceptsÐ the vectors of the Hilbert space representing the

states of the system and the self-adjoint operators representing the observ-
ablesÐ in this standard quantum mechanics are abstract mathematical con-

cepts defined mathematically in an abstract mathematical space, and this is

a problem for physicists working to understand quantum mechanics. Several

approaches have generalized the standard theory starting from more physically

defined basic concepts. John von Neumann and Garett Birkhoff initiated one
of these approaches (Birkhoff and von Neumann, 1936) when they analyzed

the difference between quantum and classical theories by studying experimen-

tal propositions. ’ They showed that for a given physical system, classical

theories have a Boolean lattice of experimental propositions, while for quan-

tum theory the lattice of experimental propositions is not Boolean. Similar

fundamental structural differences between the two theories have been investi-
gated by concentrating on different basic concepts. The collection of observ-

ables of a classical theory was shown to be a commutative algebra, while

this is not the case for the collection of quantum observables (Segal, 1947;

Emch, 1984). Luigi Accardi and Itamar Pitovski obtained an analogous result

by concentrating on the probability models connected to the two theories:

classical theories have a Kolmogorovian probability model, while the proba-
bility model of a quantum theory is non-Kolmogorovian (Accardi, 1982;

Pitovski, 1989). The fundamental structural differences between the two types

of theories, quantum and classical, in different categories was interpreted as

indicating also a fundamental difference on the level of the nature of the

reality that both theories describe: the micro world should be `very different’

from the macro world. The author admits that he was himself very much
convinced of this state of affairs also because very concrete attempts to

understand quantum mechanics in a classical way had failed as well: e.g.,

the many `physical’ hidden variable theories that had been tried out (Selleri,

1990). In this paper we want to concentrate on this problem: how does the
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quantum world differ from the classical world? We shall do this in the light

of the approach that we have been elaborating in Brussels and that we have

called the `hidden measurement formalism.’ We concentrate also on the
different paradoxes in quantum mechanics: the measurement problem, the

SchroÈ dinger cat paradox, the classical limit, the Einstein±Podolsky±Rosen

paradox, and the problem of nonlocality. We investigate which of these

quantum problems are due to shortcomings of the standard formalism and

which point out real physical differences between the quantum and classi-

cal worlds.

2. THE TWO MAJOR QUANTUM ASPECTS IN NATURE

As mentioned in the foregoing section, the structural difference between

quantum theories and classical theories (Boolean lattice versus non-Boolean

lattice of propositions, commutative algebra versus noncommutative algebra
of observables, and Kolmogorovian versus non-Kolmogorovian probability

structure) is one of the most convincing arguments for the belief in a deep

difference between the quantum world and the classical world. During all

the years that these structural differences have been investigated (mostly

mathematically) there has not been much understanding of the physical mean-
ing of these structural differences. In which way are these structural differ-

ences linked to some more intuitive but physically better understood

differences between quantum theory and classical theory?

Within the hidden measurement approach we have been able to identify

the physical aspects that are at the origin of the structural differences between

quantum and classical theories. These are two aspects that characterize the
nature of the measurements that have to be carried out to test the properties

of the system under study. Let us first carefully formulate these two aspects.

We have a quantum-like theory describing a system under investigation
if the measurements needed to test the properties of the system are such that:

(1) The measurements are not just observations, but provoke a real
change of the state of the system.

(2) There exists a lack of knowledge about the reality of what happens
during the measurement process.

It is the lack of knowledge (2) that is theoretically structured in a non-

Kolmogorovian probability model. In a certain sense it is possible to interpret

the second aspect, the presence of the lack of knowledge on the reality of
the measurement process, as the presence of `hidden measurements’ instead

of `hidden variables.’ Indeed, if a measurement is performed with such a

lack of knowledge, then this is actually the classical mixture of a set of

classical hidden measurements, where for such a classical hidden measure-
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ment there would be no lack of knowledge. In an analogous way as in a

hidden variable theory, the quantum state is a classical mixture of classical

states. This is why we have called the formalism that we are elaborating in
Brussels and that consists in formalizing in a mathematical theory the physical

situations containing the two mentioned aspects, the `hidden measurement

formalism’ .

3. THE QUANTUM MACHINE PRODUCING QUANTUM
STRUCTURE

After we had identified the two aspects (1) and (2) it was not difficult

to invent a quantum machine fabricated only with macroscopic materials

and producing a quantum structure isomorphic to the structure of a two-

dimensional complex Hilbert space, describing for example, the spin of a
quantum particle with spin 1/2 (Aerts, 1985, 1986, 1987). This quantum

machine has been presented on different occasions (Aerts, 1988a,b, 1991a,

1995) and therefore we shall only introduce it briefly here for the sake

of completeness.

The machine that we consider consists of a physical entity S that is a
point particle P that can move on the surface of a sphere, denoted surf, with

center O and radius 1. The unit vector v where the particle is located on surf
represents the state pv of the particle (see Fig. 1a). For each point u P surf,
we introduce the following measurement eu. We consider the diametrically

opposite point 2 u, and install a piece of elastic of length 2 such that it is

fixed with one of its endpoints in u and the other endpoint in 2 u. Once the
elastic is installed, the particle P falls from its original place v orthogonally

onto the elastic and sticks on it (Fig. 1b). Then the elastic breaks and the

particle P, attached to one of the two pieces of the elastic (Fig. 1c), moves

to one of the two endpoints u or 2 u (Fig. 1d). Depending on whether the

particle P arrives at u (as in Fig. 1) or at 2 u, we give the outcome o u
1 or

o u
2 to eu. We can easily calculate the probabilities corresponding to the two

possible outcomes.

Therefore we remark that the particle P arrives at u when the elastic

breaks at a point in the interval L1 (which is the length of the piece of the

elastic between 2 u and the point where the particle has arrived, or 1 1
cos u ), and arrives at 2 u when it breaks at a point in the interval L2 (L2 5
L 2 L1 5 2 2 L1). We make the hypothesis that the elastic breaks uniformly,
which means that the probability that the particle, being in state pv , arrives

at u is given by the length of L1 divided by the length of the total elastic

(which is 2). The probability that the particle in state pv arrives at 2 u is the

length of L2 (which is 1 2 cos u ) divided by the length of the total elastic.
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Fig. 1. A representation of the quantum machine. (a) The physical entity P is in state pv at

the point v, and the elastic corresponding to the measurement eu , is installed between the two

diametrically opposed points u and 2 u. (b) The particle P falls orthogonally onto the elastic

and sticks to it. (c) The elastic breaks and the particle P is pulled toward the point u, such that

(d) it arrives at the point u, and the measurement eu gets the outcome o u
1.

If we denote these probabilities respectively by P (o u
1, pv) and P (o u

2, pv)

we have

P (o u
1, pv) 5

1 1 cos u
2

5 cos2 u
2

, P (o u
2, pv) 5

1 2 cos u
2

5 sin2 u
2

(1)

These transition probabilities are the same as the ones related to the outcomes

of a Stern±Gerlach spin measurement on a spin-1/2 quantum particle, of

which the quantum spin state in direction v 5 (cos u sin u , sin u sin u ,

cos u ), denoted by c v , and the measurement eu corresponding to the spin

measurement in direction u 5 (cos b sin a , sin b sin a , cos a ), is described

respectively by the vector and the self-adjoint operator of a two-dimensional
complex Hilbert space,

c v 5 (e 2 i f /2cos u /2, e i f /2sin u /2), Hu 5
1

2 1 cos a e 2 i b sin a
e i b sin a cos a 2 (2)

We can easily see now the two aspects in this quantum machine that we have

identified in the hidden measurement approach to give rise to the quantum

structure. The state of the particle P is effectively changed by the measuring

apparatus ( pv changes to pu or to p 2 u under the influence of the measuring
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process), which identifies the first aspect, and there is a lack of knowledge

on the interaction between the measuring apparatus and the particle, namely

the lack of knowledge of where exactly the elastic will break, which identifies
the second aspect. We can also easily understand now what is meant by the

term `hidden measurements.’ Each time the elastic breaks at one specific point

l , we could identify the measurement process that is carried out afterward as

a hidden measurement e l
u. The measurement eu is then a classical mixture of

the collection of all measurement e l
u: namely eu consists in choosing at random

one of the e l
u and performing this chosen eu.

4. THE QUANTUM CLASSICAL RELATION

First we remark that our group in Brussels has shown that such a hidden
measurement model can be built for any arbitrary quantum entity (Aerts,

1985, 1986, 1987; Coecke, 1995a,b). However, the hidden measurement

formalism is more general than standard quantum theory. Indeed, it is very

easy to produce quantum-like structures that cannot be represented in a

complex Hilbert space (Aerts, 1986).

If the quantum structure can be explained by the presence of a lack of
knowledge on the measurement process, we can go a step further, and wonder

what types of structure arise when we consider the original models, with a

lack of knowledge on the measurement process, and introduce a variation of

the magnitude of this lack of knowledge. We have studied the quantum

machine under varying `lack of knowledge’ , parametrizing this variation by
a number e P [0,1], such that e 5 1 corresponds to the situation of maximal

lack of knowledge, giving rise to a quantum structure, and e 5 0 corresponds

to the situation of zero lack of knowledge, generating a classical structure.

Other values of e correspond to intermediate situations and give rise to a

structure that is neither quantum nor classical (Aerts et al., 1992, 1993; Aerts

and Durt, 1994a,b). We have called this model the e -model and want to
introduce it again in this paper to explain how some of the quantum paradoxes

are solved in the hidden measurement formalism.

4.1. The e -Model

We start from the quantum machine, but now introduce different types

of elastic. An e ,d-elastic consists of three different parts: a lower part where

it is unbreakable, a middle part where it breaks uniformly, and an upper part
where it is again unbreakable. By means of the two parameters e P [0,1]

and d P [ 2 1 1 e , 1 2 e ], we fix the sizes of the three parts in the following

way. Suppose that we have installed the e ,d-elastic between the points 2 u
and u of the sphere. Then the elastic is unbreakable in the lower part from
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Fig. 2. A representation of the measurement e e
u,d. The elastic breaks uniformly between

the points (d 2 e ) u and (d 1 e )u, and is unbreakable at other points.

2 u to (d 2 e ) ? u, it breaks uniformly in the part from (d 2 e ) ? u to
(d 1 e ) ? u, and it is again unbreakable in the upper part from (d 1 e ) ? u
to u (see Fig. 2).

An eu measurement performed by means of an e ,d-elastic shall be denoted

by e e
u,d. We have the following cases:

(1) v ? u # d 2 e . The particle sticks to the lower part of the e ,d-elastic,

and any breaking of the elastic pulls it down to the point 2 u. We have P e (
o u

1, pv) 5 0 and P e (o u
2, pv) 5 1.

(2) d 2 e , v ? u , d 1 e . The particle falls onto the breakable part

of the e ,d-elastic. We can easily calculate the transition probabilities and find

P e (o u
1, pv) 5

1

2 e
(v ? u 2 d 1 e ), P e (du

2, pv) 5
1

2 e
(d 1 e 2 v ? u) (3)

(3) d 1 e # v ? u. The particle falls onto the upper part of the e ,d-

elastic, and any breaking of the elastic pulls it upward, such that it arrives

at u. We have P e (o u
1, pv) 5 1 and P e (o u

2, pv) 5 0.

We are now in a very interesting situation from the point of view of

the structural studies of quantum mechanics. Since the e -model describes a
continuous transition from quantum to classical, its mathematical structure

should be able to teach us what the structural shortcomings are of the standard
Hilbert space quantum mechanics. Therefore we have studied the e -model

in existing mathematical approaches that are more general than standard

quantum mechanics: the lattice approach, the probabilistic approach, and the

*-algebra approach.

4.2. The Lattice Approach

In this lattice approach there is a well-known axiomatic scheme that

reduces the approach to standard quantum mechanics if certain axioms are



298 Aerts

fulfilled. For intermediate values of e , that is, 0 , e , 1, we find that two

of the five axioms needed in the lattice approach to reconstruct standard

quantum mechanics are violated. The axioms that are violated are the weak-
modularity and the covering law, and it is precisely those axioms that are

needed to recover the vector space structure of the state space in quantum

mechanics (Aerts et al., 1993; Aerts and Durt, 1994a, b).

4.3. The Probabilistic Approach

If we take the case of vanishing fluctuations ( e 5 0), do we obtain the

Kolmogorovian theory of probability? This would be most interesting, since

then we would have constructed a macroscopic model with an understandable

structure (i.e., we can see how the probabilities arise) and a quantum and a

classical behavior. We proposed to test the polytopes for a family of condi-

tional probabilities (D. Aerts, 1995). The calculations can be found in S.
Aerts (1996) and the result was what we hoped for: a macroscopic model

with a quantum and a Kolmogorovian limit. For intermediate values of the

fluctuations (0 , e , 1) the resulting probability model is neither quantum

nor Kolmogorovian: we have identified here a new type of probability model

that is quantum-like, but not really isomorphic to the probability model found

in a complex Hilbert space.

4.4. The *-Algebra Approach

The *-algebra provides a natural mathematical language for quantum

mechanical operators. We applied the concepts of this approach to the e -

model to find that an operator corresponding to an e measurement is linear
if and only if e 5 1 (Aerts and D’ Hooghe, 1996). This means that for the

classical and intermediate situations the observables cannot be described by

linear operators.

Conclusion. Quantum theory and classical theories appear as special

cases ( e 5 1, e 5 0), and the general intermediate case, although quantum-
like, cannot be described in standard Hilbert space quantum mechanics.

4.5. The Measurement Problem and SchroÈ dinger Cat Paradox

The result stated in the Conclusion means that all the paradoxes of

standard quantum theory that are due to the fact that quantum theory is used

as a universal theory also being applied to a macroscopic system, for example,
the measuring apparatus, are not present in our hidden measurement formal-

ism. We explicitly have in mind the `measurement problem’ and the `SchroÈ d-

inger cat paradox’ . Indeed, the measurement apparatus should be described

by a classical model in our approach, and the physical system eventually by
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a quantum model. The problem of the presence of quantum correlations

between physical system and measuring apparatus, as it presents itself in the

standard theory, takes a completely different aspect. We are working now on
the elaboration of a concrete description of the measurement process within

the hidden measurement formalism (Aerts and Durt, 1994b). Our result also

shows that it is possible in the hidden measurement formalism to formulate

a `classical limit’ , namely as a continuous transition from quantum to classical

(Aerts et al., 1993).

5. NONLOCALITY AS A GENUINE PROPERTY OF NATURE

The measurement problem and paradoxes equivalent to SchroÈ dinger’ s

cat paradox disappear in the hidden measurement formalism because standard

quantum mechanics appears only as a special case, the situation of maximum
fluctuations. All quantum mysteries connected to the effect of `nonlocality’

remain (Einstein±Podolsky±Rosen paradox and the violation of the Bell ine-

qualities). It is even so that nonlocality unfolds itself as a fundamental aspect

of the hidden measurement approach. This is due to the fact that if we explain

the quantum structures as is done in the hidden measurement formalism a
quantum measurement has two concrete physical effects: (1) it changes the

state of the system and (2) it produces probability due to a lack of knowledge

about the nature of this change. With the quantum machine we have given

a macroscopic model for a spin measurement of a spin-1/2 particle. If we

apply the hidden measurement formalism to the situation of a quantum

system described by a wave function c (x) and to a position or a momentum
measurement performed on this system, we also have the two mentioned

effects. For example, in the case of a position measurement, the detection

apparatus changes the state of the quantum system, in the sense that it

`localizes’ the quantum system in a specific place of space, and the probabili-

ties that are connected with this measurement are due to the fact that we lack

knowledge about the specific way in which this localization takes place. This
means that `before the detection has taken place’ the quantum system was

in general not localized: it was not present in a specific region of space. In

other words, quantum systems are fundamentally nonlocal systems: the wave

function c (x) describing such a quantum state is not interpreted as a wave

that is present in space, but as indicating those regions of space were the

particle can be localized, where * R | c (x) | 2 dx is the probability that this
localization will happen in region R. A similar interpretation must be given

to the momentum measurement of a quantum entity: the quantum entity has

no momentum before the measurement, but the measurement creates partly

this momentum.
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Aerts et al. (1993) calculated the e -situation for a quantum system

described by a wave function c (x), element of the Hilbert space of all square-

integrable complex functions, and we found the following very simple proce-
dure. Suppose that e is given, and the state of the quantum system is described

by the wave function c (x), and f (x) is the corresponding probability distribu-

tion [hence f (x) 5 | c (x) | 2]. We cut, by means of a constant function f V , a

piece of the function f (x) such that the surface contained in the cutoff piece

equals e (see step 1 of Fig. 3). We move this piece of function to the x axis

(see step 2 of Fig. 3). Then we renormalize by dividing by e (see step 3 of
Fig. 3). If we proceed in this way for smaller values of e , we finally arrive

at a delta function for the classical limit e ® 0, and the delta function is

located at the original maximum of the quantum probability distribution. We

point out that the state c (x) of the physical system is not changed by this e -

procedure, it remains always the same state, representing the same physical

reality. It is the regime of lack of knowledge, together with the detection
measurement, that changes with varying e . For e 5 1 this regime is one of

maximum lack of knowledge on the process of localization, and this lack of

knowledge is characterized by the spread of the probability distribution f (x).

For an intermediate value of e , between 1 and 0, the spread of the probability

Fig. 3. The classical limit procedure.
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distribution has decreased (see Fig. 3) and for zero fluctuations the spread

is 0. Let us also try to see what becomes of the nonlocal behavior of quantum

entities taking into account the classical limit procedure that we propose.
Suppose that we consider a double-slit experiment, then the state p of a

quantum entity having passed the slits can be represented by a probability

function p (x) of the form represented in Fig. 4. We can see that the nonlocality

presented by this probability function gradually disappears when e becomes

smaller, and, in the case where p (x) has only one maximum, finally disappears

completely. When there are no fluctuations on the measuring apparatus used
to detect the particle, it shall be detected with certainty in one of the slits,

and always in the same one. If p (x) has two maxima (one behind slit 1, and

the other behind slit 2) that are equal, the nonlocality does not disappear.

Indeed, in this case the limit function is the sum of two delta functions (one

behind slit 1 and one behind slit 2). So in this case the nonlocality remains

present even in the classical limit. If our procedure for the classical limit is
a correct one, also macroscopic classical entities can be in nonlocal states.

How does it come about that we do not find any sign of this nonlocality in

the classical macroscopic world? This is due to the fact that the set of states

representing a situation where the probability function has more than one

maximum has measure zero, compared to the set of all possible states, and
moreover these states are `unstable’ . The slightest perturbation will destroy

the symmetry of the different maxima, and hence shall give rise to one point

Fig. 4. The classical limit procedure in the situation of a nonlocal quantum state.
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of localization in the classical limit. Also, classical macroscopic reality is

nonlocal, but the local model that we use to describe it gives the same

statistical results, and hence cannot be distinguished from the nonlocal model.

6. THE VIOLATION OF BELL INEQUALITIES: QUANTUM,
CLASSICAL, AND INTERMEDIATE

It is interesting to consider the violation of Bell’s inequalities within

the hidden measurement formalism. The quantum machine, as presented in
Section 3, delivers us a macroscopic model for the spin of a spin-1/2 quantum

entity, and starting with this model it is possible to construct a macroscopic

situation, using two of these models coupled by a rigid rod, that represents

faithfully the situations of two entangled quantum particles of spin-1/2 (Aerts,

1991b). The `nonlocal’ element is introduced explicitly by means of a rod
that connects the two sphere models. We also have studied this EPR situation

of entangled quantum systems by introducing the e variation of the amount

of lack of knowledge on the measurement processes and could show that

one violates the Bell inequalities even more for classical but nonlocally

connected systems, that is, e 5 0. This illustrates that the violation of the

Bell inequalities is due to the nonlocality rather then to the indeterministic
character of quantum theory, and that the quantum indeterminism (for values

of e greater than 0) tempers the violation of the Bell inequalities (Aerts et
al., 1996a). This idea has been used to construct a general representation

of entangled states (hidden correlations) within the hidden measurement

formalism (Coecke, 1996a,b; Coecke et al., 1996).
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